首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   29篇
  国内免费   10篇
测绘学   15篇
大气科学   45篇
地球物理   139篇
地质学   308篇
海洋学   77篇
天文学   113篇
综合类   2篇
自然地理   100篇
  2022年   4篇
  2020年   9篇
  2019年   8篇
  2018年   19篇
  2017年   13篇
  2016年   29篇
  2015年   13篇
  2014年   23篇
  2013年   37篇
  2012年   16篇
  2011年   34篇
  2010年   27篇
  2009年   33篇
  2008年   38篇
  2007年   33篇
  2006年   28篇
  2005年   25篇
  2004年   19篇
  2003年   36篇
  2002年   23篇
  2001年   26篇
  2000年   20篇
  1999年   12篇
  1998年   26篇
  1997年   13篇
  1996年   14篇
  1995年   8篇
  1994年   13篇
  1993年   12篇
  1992年   12篇
  1991年   13篇
  1990年   11篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   6篇
  1973年   9篇
  1970年   3篇
排序方式: 共有799条查询结果,搜索用时 268 毫秒
31.
Phase equilibria in the ternary systems H2O–CO2–NaCl and H2O–CO2–CaCl2 have been determined from the study of synthetic fluid inclusions in quartz at 500 and 800 °C, 0.5 and 0.9 GPa. The crystallographic control on rates of quartz overgrowth on synthetic quartz crystals was exploited to prevent trapping of fluid inclusions prior to attainment of run conditions. Two types of fluid inclusion were found with different density or CO2 homogenisation temperature (Th(CO2)): a CO2-rich phase with low Th(CO2), and a brine with relatively high Th(CO2). The density of CO2 was calibrated using inclusions in the binary system H2O–CO2. Mass balance calculations constrain tie lines and the miscibility gap between brines and CO2-rich fluids in the H2O–CO2–NaCl and H2O–CO2–CaCl2 systems at 500 and 800 °C, and 0.5 and 0.9 GPa. The miscibility gap in the CaCl2 system is larger than in the NaCl system, and solubilities of CO2 are smaller. CaCl2 demonstrates a larger salting-out effect than NaCl at the same P–T conditions. In ternary systems, homogeneous fluids are H2O-rich and of extremely low salinity, but at medium to high concentrations of salts and non-polar gases fluids are unlikely to be homogeneous. The two-phase state of crustal fluids should be common. For low fluid-rock ratios the cation compositions of crustal fluids are buffered by major crustal minerals: feldspars and micas in pelites and granitic rocks, calcite (dolomite) in carbonates, and pyroxenes and amphiboles in metabasites. Fluids in pelitic and granitic rocks are Na-K rich, while for carbonate and metabasic rocks fluids are Ca-Mg-Fe rich. On lithological boundaries between silicate and carbonate rocks, or between pelites and metabasites, diffusive cation exchange of the salt components of the fluid will cause the surfaces of immiscibility to intersect, leading to unmixing in the fluid phase. Dispersion of acoustic energy at critical conditions of the fluid may amplify seismic reflections that result from different fluid densities on lithological boundaries.Editorial responsibility: I. Parsons  相似文献   
32.
Regions and sustainable development: regional planning matters   总被引:1,自引:0,他引:1  
This paper looks at how the term 'sustainable development' has been used in the process of regional plan making over the past decade. It emphasizes the differing geographies of these debates within England, in terms of how sustainable development has been used to justify different types of approach in different parts of the country. Both drawing on and challenging recent work on state theory, the paper argues the need to see regional planning as a part of a multi-scalar governance system, whose importance should not be underestimated.  相似文献   
33.
Three‐dimensional (3D) numerical modelling of fault displacement enables the building of geological models to represent the complex 3D geometry and geological properties of faulted sedimentary basins. Using these models, cross‐fault juxtaposition relationships are predicted in 3D space and through time, based on the geometries of strata that are cut by faults. Forward modelling of fault development allows a 3D prediction of fault‐zone argillaceous smear using a 3D application of the Shale Gouge Ratio. Numerical models of the Artemis Field, Southern North Sea, UK and the Moab Fault, Utah, USA are used to demonstrate the developed techniques and compare them to traditional one‐ and two‐dimensional solutions. These examples demonstrate that a 3D analysis leads to significant improvements in the prediction of fault seal, the analysis of the interaction of the sealing properties of multiple faults, and the interpretation of fault seal within the context of sedimentary basin geometry.  相似文献   
34.
Pore water profiles of dissolved Si, Ca2+, SO42-, CH4, and TCO2 (Dissolved Inorganic Carbon; DIC) were determined from multicores and gravity cores collected at nine sites off Southern California, the west coast of Mexico, and within the Gulf of California. These sites were located within the eastern North Pacific oxygen minimum zone at depths of 400 to 900 m and in settings where bottom water oxygen concentrations were <3 μM and sediments were laminated. Pore water profiles were defined at a resolution of millimeters (whole core squeezing), centimeters (sectioning and squeezing) and meters (gravity core sectioning and squeezing), and diffusive fluxes were calculated for different zones within the sediment column. The flux of dissolved silica across the sediment-water interface (SWI) ranged from 0.3 to 3.4 mmol Si m-2d-1, and TCO2 fluxes ranged from 0.8 to 4.6 mmol C m-2d-1. A positive correlation (r = 0.74) existed between these fluxes, yet these two constituents exhibited significantly different diagenetic behavior downcore; dissolved Si generally reached a constant concentration (between 450 and 900 μM) in the upper few cm, whereas TCO2 concentrations increased monotonically with depth.Methane was detected at micromolar levels in sediment intervals between 0 and 60 cm and at five sites, increased to millimolar levels at depths of 80 to 170 cm. At the horizon marking the appearance of millimolar levels of methane, there was a distinct change in slope of the sulfate and TCO2 gradients. A flux budget for this horizon was determined by using linear fits to pore water profiles; these budgets indicate that the upward TCO2 flux away from this horizon is 40 to 50% greater than the downward sulfate flux to this horizon. Given that the TCO2 flux to this horizon from below was quite small, this imbalance suggests that anaerobic oxidation of methane by sulfate is not the only process producing TCO2 within this horizon. A budget for TCO2 at this horizon is balanced when 40 to 80% of the sulfate flux is attributed to organic carbon remineralization. Of the DIC that diffuses across the SWI, 20 to 40% is generated by reactions occurring within or below this deep reaction horizon.  相似文献   
35.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
36.
The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine‐banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene‐age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed.  相似文献   
37.
Here we examine the arrangement of plant species across an oligotrophic bog/poor fen peatland complex in the North American boreal plain and the relationships of these species to their physical and chemical environment. A semi‐uniform spatial sampling approach was utilized to describe the species assemblages, pore‐water chemistry and physical condition of 100 plots throughout a single peatland complex. Regardless of sharing the same ground cover of Sphagnum mosses, the remaining species separated into four distinct assemblages, each with unique indicators. These species groups along with associated chemical and physical factors are organized into four ecosites: bog, margin (edge) and two poor fen ecosites. The plant assemblages of this peatland have a complex relationship with numerous gradients, both physical and chemical, including depth to water table, shade, pH, nutrient and base cation. Rather than being homogenous across the landscape, most environmental variables exhibit distinct spatial patterns and do so in relationship to the plant assemblages, forming spatially distinct ecosites across the complex. Base cation concentrations play a smaller role than previously thought in differentiating these ecosites, and in addition to shade and depth to water table, nitrogen in the form of dissolved organic nitrogen was highly related to the placement of these ecosites. Many significant chemical factors appear related to evaporative water loss within the peatland complex, and these chemical factors are used to differentiate the ecosites. However, the mediation of evaporative water loss is due largely to self‐generated responses of the plant assemblages related to shade through plant morphology and peat acrotelm development related to depth to water table. We conclude that plant species and associated environmental gradients act together to form spatially distinct ecosites. The distribution of these ecosites within this large, environmentally complex peatland is largely controlled by differing self‐generated responses along the hydrotopographical gradient of differential water loss.  相似文献   
38.
In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics.  相似文献   
39.
A unique type of Nb–Zr–REE–Ga-enriched alkali tonstein of pyroclastic origin occurs exclusively within the late Permian coal measures of southwest China. The alkali tonsteins are located within the lowest Xuanwei or Longtan formations of Wuchiapingian age, indicating that their age is later than the main episode of Emeishan Large Igneous Province (ELIP) magmatism. The alkali tonsteins have intermediate–felsic Al2O3/TiO2 values (12.6–34.2, mean 22.0), light rare earth element-enriched chondrite-normalised patterns, negative δEu and incompatible element ratios similar to those of ELIP alkaline Nb–Ta-enriched syenites. All available evidence shows that the alkali tonsteins from southwest China originated from coeval ELIP alkaline magmatism. The enrichment of Nb–Zr–REE–Ga in alkali tonsteins is derived from the ELIP alkaline Nb–Ta-enriched volcanic ashes and may represent the last stage of mineralisation associated with the Emeishan mantle plume activity.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号